
MPSI - ITC - TD 16 : Complément à deux

Contrairement au TP précédent, dans ce TP les écritures binaires seront des
listes de 0 et de 1 avec les chiffres qui correspondent à des puissances de 2
élevées à gauche de la liste (dit autrement, les indices élevés dans l’écriture binaire
telle que formalisée en cours correspondent aux indices faibles pour la liste python qui
la représente) et les chiffres qui correspondent à des puissances de 2 faibles
à droite de la liste (dit autrement, les indices faibles dans l’écriture binaire telle
que formalisée en cours correspondent aux indices élevés de la liste python qui la
représente). Cela se rapproche de la façon qu’on utilise pour représenter les écritures
binaires au tableau ou sur une feuille.
Par exemple, si on encode le nombre 3 en complément à deux sur 5 chiffres, cela donne
00011 qui sera représenté par la liste python [0, 0, 0, 1, 1].

Représentation des écritures binaire dans ce TP

Quand on écrit une fonction, on fait souvent des hypothèses sur les données qu’on va
recevoir en entrée. Ces hypothèses sont appelées des pré-conditions.
Quand une pré-condition d’une fonction n’est pas respectée, on peut vouloir que la
fonction déclenche une erreur. En python, on utilise le mot-clef assert.

Exemple. Si on veut coder une fonction factorielle qui déclenche une erreur si
son argument n’est pas positif ou nul, on peut procéder comme suit :

def factorielle(n):
assert(n >= 0)
if n < 2:

return 1
return n * factorielle(n-1)

Déclencher une erreur quand une hypothèse n’est pas respectée

On peut utiliser doctest pour vérifier que notre fonction déclenche bien une erreur
quand elle est censée le faire. Pour cela, on précise juste la première ligne et la dernière
ligne de l’erreur, avec trois petits points entre les deux.

Exemple

def factorielle(n):
"""
Entrée

Un entier positif ou nul.

Sortie

La factorielle de l'entier en entrée.

Erreurs possibles

Déclenche une erreur si l'entrée est négative.

>>> factorielle(5)
120

>>> factorielle(-7)
Traceback (most recent call last):
...
AssertionError
"""
assert(n >= 0)
if n < 2:

return 1
return n * factorielle(n-1)

Tester le déclenchement d’erreur avec doctest

Vous disposez d’un fichier prérempli pour vous faire gagner du temps (dans le navigateur,
clic-droit sur le lien, enregistrer la cible du lien sous).

1. Écrire une fonction complement_chiffre qui prend en entrée un chiffre binaire (qui
vaut soit 0 soit 1) et qui renvoie son complémentaire.
Votre fonction déclenchera une erreur si l’entrée n’appartient pas à l’ensemble {0, 1}.
Inspirez-vous de l’exemple fourni pour vos tests.

2. Écrire une fonction complement_ecriture qui prend en entrée une écriture binaire
et renvoie son complémentaire.
Votre fonction fera appel à la fonction complement_chiffre.

Exercice 1 (Complémentaire)

2

1. Écrire une fonction encode_comp_2 qui prend en paramètre un entier relatif n et un
nombre de chiffres k et encode n en complément à 2 sur k chiffres.
Votre fonction déclenchera une erreur si k est strictement inférieur à 2, ou si n ne
fait pas partie des nombres pouvant être encodés en complément à 2 sur k chiffres.
Compléter les tests dans la docstring de votre fonction.

2. Écrire une fonction decode_comp_2 qui prend en entrée une écriture binaire, et qui
la décode, en l’interprétant comme du complément à 2.
Votre fonction déclenchera une erreur si la taille de l’entrée est strictement inférieure
à 2.
Compléter les tests dans la docstring de votre fonction.

Exercice 2 (Encodage et décodage en complément à deux)

On se place dans un contexte où le nombre de chiffres binaires à utiliser est fixé.
Pour certains algorithmes et pour certains appareils électroniques, on a besoin d’encoder
les nombres positifs en binaire de telle sorte à ce que quand on passe d’un nombre au
suivant (addition de 1) il y ait au plus 1 chiffre binaire qui change à la fois.
Un encodage binaire des nombres positifs qui respecte cette propriété est appelé un code
de Gray.

Remarque : l’écriture binaire classique d’un nombre positif, vue en cours, n’est pas un
code de Gray. Par exemple, sur 2 chiffres, l’écriture binaire de 1 est 01 et l’écriture binaire
de 2 est 10. On voit donc que lorsqu’on est passé de 1 à 2 (addition de 1), il y a deux
chiffres qui ont changé au même temps.
On propose ci-dessous un algorithme d’encodage possible pour un code de Gray.

Encodage Soit n le nombre à encoder sur k bits. Soit bk−1...b0 son écriture binaire clas-
sique. On définit son code de Gray g = gk−1...g0 par

gk−1 = bk−1

∀i ∈ J0, k − 2K, gi = bi si bi+1 = 0

∀i ∈ J0, k − 2K, gi = bi si bi+1 = 1

1. À la main, donner l’écriture binaire ainsi que le code de Gray des entiers entre 0 et
7.

2. Écrire une fonction encode_gray(n, k) qui renvoie le code de Gray de n sur k
chiffres.

3. Vérifier que vous obtenez bien un code de Gray (par exemple sur 5 chiffres).
4. Écrire une fonction decode_gray(g) qui renvoie l’entier associé au code de Gray g.
5. Plus tôt dans l’année on a déjà manipulé un code de Gray, sans le dire. Sauriez-vous

dire quand ? Était-ce le même code de Gray, ou un code de Gray différent ?

Exercice 3 (Bonus : Code de Gray)

3

