TP 15 : REPRESENTATION DES ENTIERS NATURELS

,—[Représentation d’une écriture binaire}

Dans ce TP une écriture binaire sera toujours représentée comme une liste python
contenant des booléens. On rappelle qu’il n’existe que deux valeurs booléennes :
— La valeur True qu’on va utiliser pour représenter le chiffre 1
— La valeur False qu’on va utiliser pour représenter le chiffre 0
Comme vu en cours, dans une écriture binaire b, ... b1by, a chaque chiffre correspond
un indice i et une puissance de deux 2°; et quand on écrit sur feuille ou au tableau,
on écrit les chiffres de plus grand indice & droite, et ceux de plus faible indice a
gauche. Cependant, pour éviter des erreurs de programmation, dans ce TP on va faire
correspondre les indices des chiffres dans une écriture binaire avec les indices des listes
python qu’on va utiliser pour les représenter. Dans ce TP, donc, les chiffres de
faible indice seront a gauche de la liste, et les chiffres d’indice élevé seront
a droite de la liste, & 'envers d’une représentation manuscrite ou textuelle.
Par exemple,
— Le nombre 8 dont I’écriture binaire est 1000 sera représentée par la liste python
[False, False, False, True]
— Le nombre 42 dont I’écriture binaire est 101010 sera représenté par la liste
python [False, True, False, True, False, True]

\. J

[Exercice 1 (Affichage d'une écriture binaire)}

Ecrire une fonction affiche qui prend en entrée une écriture binaire (une liste de booléens)
et qui l'affiche de la méme fagon qu’on l'aurait écrite a la main (avec des 0 et des 1, avec
les indices plus forts a droite et les plus faibles a gauche).

L’entéte et le commentaire de documentation de votre fonction peuvent par exemple étre
les suivants :

def affiche(ecriture):

mnimn

Affiche une écriture binaire.

>>> affiche([False, False, False, True])
1000

>>> affiche([False, True, False, True, False, True])
101010

nnn

A faire: écrire votre code tct

,—{Exercice 2 (Décodage binaire)]

)

Ecrire une fonction decodage_bin qui prend en entrée une écriture binaire et renvoie I’entier
correspondant.

Exemple d’entéte et commentaire de documentation :

def decodage_bin(ecriture):

nmnn

Décodage d'écritures binaires
(de nmombres postitifs).

Une écriture binarire.

Sortie

L'entier positif correspondant.

>>> decodage_bin([False, False, False, True])
8

>>> decodage_bin([False, True, False, True, False, Truel)

42

ninn

,—{Exercice 3 (Encodage binaire)]

)

1. Ecrire une fonction encodage_bin qui prend en entrée un nombre et renvoie son
écriture binaire.

Exemple d’entéte et commentaire de documentation :

def encodage_bin(n):
Encodage en binaire
(de nmombres positifs, sans limite du mombre de chiffres).

Entrée

Un entier naturel.

Sortie
L'écriture binaire de cet entier.
Le chiffre de plus fort indice est toujours 1,
sauf si l'entier encodé est 0, dans lequel cas
l'écriture est forcément [False].

>>> encodage_bin(8)
[False, False, False, True]

>>> encodage_bin(42)
[False, True, False, True, False, True]

nnn

2. Faites en tout au moins 2 version différentes de votre fonction encodage_bin de

telle sorte que

— Au moins 'une des versions utilise la méthode 4 du cours (encodage « de gauche
a droite »).

— Au moins l'une des versions utilise la méthode 9 du cours (encodage « de droite
a gauche »).

— Au moins 'une des versions est récursive.

Remarque 1 : Les listes python ont une méthode reverse qui inverse l'ordre des

éléments dans une liste, en place. Par exemple :

1=1[1, 2, 3]

Aprés cette affectation 1 contient [1, 2, 3]
1.reverse()

Aprés cet appel de méthode, 1 contient [3, 2, 1]

Remarque 2 : Il devrait étre plus simple de faire une version récursive avec la mé-
thode 9 qu’avec la méthode 4. .. mais en soi tout est possible.

,—[Exercice 4 (Entiers non-signés de taille ﬁxe)}

Dans cet exercice, comme dans la partie 2 du cours, on va limiter le nombre maximum de
chiffres d'une écriture binaire.

— Ecrire une fonction encoder_fixe qui prend en arguments un entier n a encoder et
un nombre k de chiffres binaires & utiliser, et qui renvoie I’encodage sur k chiffres
binaires de n.

Le résultat sera de taille exactement k. Tout chiffre non-nécessaire sera fixé a 0 (donc
a False dans notre représentation).
— Est-il nécessaire d’écrire une fonction decoder_fixe (et si non pourquoi) ?

,—[Exercice 5 (Addition de taille ﬁxe)}

Ecrire une fonction addition qui prend en entrée deux écriture binaires de méme taille et
renvoie leur somme.

Votre fonction vérifiera que les deux écritures en entrée ont bien la méme taille. Le résultat
aura la méme taille que les entrées.

,—[Exercice 6 (Bonus : complexités)}

Quelle est la complexité des différentes fonctions que vous avez codé pendant ce TP ? (Y
compris de la version récursive de encoder_bin)

