
TP 15 : Représentation des entiers naturels

Dans ce TP une écriture binaire sera toujours représentée comme une liste python
contenant des booléens. On rappelle qu’il n’existe que deux valeurs booléennes :

— La valeur True qu’on va utiliser pour représenter le chiffre 1
— La valeur False qu’on va utiliser pour représenter le chiffre 0

Comme vu en cours, dans une écriture binaire bn . . . b1b0, à chaque chiffre correspond
un indice i et une puissance de deux 2i ; et quand on écrit sur feuille ou au tableau,
on écrit les chiffres de plus grand indice à droite, et ceux de plus faible indice à
gauche. Cependant, pour éviter des erreurs de programmation, dans ce TP on va faire
correspondre les indices des chiffres dans une écriture binaire avec les indices des listes
python qu’on va utiliser pour les représenter. Dans ce TP, donc, les chiffres de
faible indice seront à gauche de la liste, et les chiffres d’indice élevé seront
à droite de la liste, à l’envers d’une représentation manuscrite ou textuelle.
Par exemple,

— Le nombre 8 dont l’écriture binaire est 1000 sera représentée par la liste python
[False, False, False, True]

— Le nombre 42 dont l’écriture binaire est 101010 sera représenté par la liste
python [False, True, False, True, False, True]

Représentation d’une écriture binaire

Écrire une fonction affiche qui prend en entrée une écriture binaire (une liste de booléens)
et qui l’affiche de la même façon qu’on l’aurait écrite à la main (avec des 0 et des 1, avec
les indices plus forts à droite et les plus faibles à gauche).
L’entête et le commentaire de documentation de votre fonction peuvent par exemple être
les suivants :

def affiche(ecriture):
"""
Affiche une écriture binaire.

>>> affiche([False, False, False, True])
1000

>>> affiche([False, True, False, True, False, True])
101010
"""
À faire: écrire votre code ici

Exercice 1 (Affichage d’une écriture binaire)

Écrire une fonction decodage_bin qui prend en entrée une écriture binaire et renvoie l’entier
correspondant.
Exemple d’entête et commentaire de documentation :

def decodage_bin(ecriture):
"""
Décodage d'écritures binaires
(de nombres positifs).

Entrée

Une écriture binaire.

Sortie

L'entier positif correspondant.

>>> decodage_bin([False, False, False, True])
8

>>> decodage_bin([False, True, False, True, False, True])
42
"""

Exercice 2 (Décodage binaire)

2

1. Écrire une fonction encodage_bin qui prend en entrée un nombre et renvoie son
écriture binaire.
Exemple d’entête et commentaire de documentation :

def encodage_bin(n):
"""
Encodage en binaire
(de nombres positifs, sans limite du nombre de chiffres).

Entrée

Un entier naturel.

Sortie

L'écriture binaire de cet entier.
Le chiffre de plus fort indice est toujours 1,
sauf si l'entier encodé est 0, dans lequel cas
l'écriture est forcément [False].

>>> encodage_bin(8)
[False, False, False, True]

>>> encodage_bin(42)
[False, True, False, True, False, True]
"""

2. Faites en tout au moins 2 version différentes de votre fonction encodage_bin de
telle sorte que
— Au moins l’une des versions utilise la méthode 4 du cours (encodage « de gauche

à droite »).
— Au moins l’une des versions utilise la méthode 9 du cours (encodage « de droite

à gauche »).
— Au moins l’une des versions est récursive.
Remarque 1 : Les listes python ont une méthode reverse qui inverse l’ordre des
éléments dans une liste, en place. Par exemple :

l = [1, 2, 3]
Après cette affectation l contient [1, 2, 3]
l.reverse()
Après cet appel de méthode, l contient [3, 2, 1]

Remarque 2 : Il devrait être plus simple de faire une version récursive avec la mé-
thode 9 qu’avec la méthode 4. . . mais en soi tout est possible.

Exercice 3 (Encodage binaire)

3

Dans cet exercice, comme dans la partie 2 du cours, on va limiter le nombre maximum de
chiffres d’une écriture binaire.

— Écrire une fonction encoder_fixe qui prend en arguments un entier n à encoder et
un nombre k de chiffres binaires à utiliser, et qui renvoie l’encodage sur k chiffres
binaires de n.
Le résultat sera de taille exactement k. Tout chiffre non-nécessaire sera fixé à 0 (donc
à False dans notre représentation).

— Est-il nécessaire d’écrire une fonction decoder_fixe (et si non pourquoi) ?

Exercice 4 (Entiers non-signés de taille fixe)

Écrire une fonction addition qui prend en entrée deux écriture binaires de même taille et
renvoie leur somme.
Votre fonction vérifiera que les deux écritures en entrée ont bien la même taille. Le résultat
aura la même taille que les entrées.

Exercice 5 (Addition de taille fixe)

Quelle est la complexité des différentes fonctions que vous avez codé pendant ce TP ? (Y
compris de la version récursive de encoder_bin)

Exercice 6 (Bonus : complexités)

4

