Chapitre 3

Représentation d'un entier relatif

Exercice 10

Représenter dans un tableau à 3 colonnes, toutes les valeurs de base en hexadécimal et les valeurs correspondantes en décimal et en binaire sur 4 bits. Prévoir de rajouter plusieurs colonnes en plus.

Un entier relatif est un entier qui peut être positif, nul ou négatif : $n \in \mathbb{Z}$. La solution des exercices est en fin de chapitre.

1 Première approche

Comment représenter un entier négatif en informatique? En général, la première idée qui vient est d'utiliser le bit de poids fort comme bit de signe.

Exercice 11

- 1. Reprendre le tableau de l'exercice précédent et dans une nouvelle colonne, regarder comment on pourrait noter les entiers si le bit de gauche est le bit de signe.
- 2. Combien y a-t-il de zéro?
- 3. Est-ce qu'avec cette convention, on retouve le fait que 2 + (-2) = 0?

2 Deuxième approche

Exercice 12

En réalité, on a une contrainte matérielle forte : on doit utiliser le même circuit logique (appelé additionneur) pour faire des calculs sur les entiers, qu'ils soient relatifs ou non. Donc, on va prendre le problème à l'envers.

- 1. On considère l'entier $1_{(10)}=0001_{(2)}$ codé en binaire sur 4 bits. Quel nombre binaire, auquel on ajouterait $0001_{(2)}$ donnerait 0?
- 2. Dans une nouvelle colonne du tableau, noter les valeurs de 1 et -1.
- 3. Refaire le même raisonnement pour -2, puis les autres valeurs.

Cette méthode s'appelle le **complément à deux**.

Représentation d'un entier relatif

Un entier relatif n est représenté sur N bits par un entier naturel :

- si $n \ge 0$, alors n est représenté par la valeur n
- sinon, n est représenté par la valeur $2^N + n$

Avec cette manière de faire,

- il y a un seul 0 représenté en binaire par N bits à 0
- on utilise le même circuit électronique pour additionner des entiers positifs ou négatifs, on va voir qu'une soustraction correspond à 2 additions, on préserve les multiplications, ...
- il se trouve que le premier bit (qui n'est pas forcément le bit de poids fort) est le bit de signe,
 mais c'est une conséquence du choix du complément à 2 et non un choix imposé initialement

Représentation binaire d'un entier relatif : méthodologie

Si $n \geq 0$, alors on cherche sa représentation en binaire sur N bits.

Si n < 0,

- on cherche la représentation en binaire sur N bits de -n qui est positif
- $-\,$ on complémente le nombre binaire trouvé à $2:0\leftrightarrow 1,$ un bit nul passe à 1 et vice-versa
- on ajoute 1 et on oublie l'éventuelle retenue sur le Nième bit

Exercice 13

- 1. Quelle est la représentation de $-1_{(10)}$ en binaire sur 8 bits?
- 2. Quel est le plus grand entier positif que l'on peut représenter sur N bits en complément à 2?
- 3. Idem pour l'entier négatif le plus petit?
- 4. Faire un schéma circulaire représentant les entiers relatifs sur 4 bits.
- 5. Refaire sur 8 bits ce qu'on a fait sur 4 bits en complément à deux.
- 6. Faire un schéma circulaire représentant les entiers relatifs sur 8 bits.

3 Dépassement de capacité

Quand une mémoire est encodée sur N bits (64 bits actuellement), l'éventuelle retenue sur le premier bit est perdue quoi qu'il arrive. Cela a pour conséquence des dépassements de capacité (*overflow* en anglais)

Exercice 14

On reprend l'exemple du début de ce chapitre avec le tableau et l'encodage sur 4 bits (dont 1 bit de signe) d'un entier relatif.

- 1. Calculer 6+3 en binaire. A quoi correspond le résultat en complément à 2?
- 2. Calculer (-7)+(-3). A quoi correspond ce résulat en complément à 2?
- 3. Comment peut-on facilement repérer un dépassement de capacité en regardant le signe des nombres ?

4 Résumé

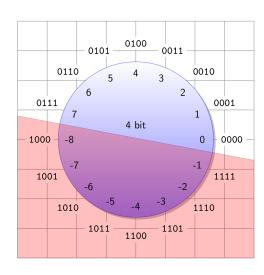
En informatique, un entier qui peut être négatif est un entier signé, tandis qu'un entier naturel sera qualifié de entier non signé.

En complément à deux, un entier signé est représenté par un entier non signé. On utilise l'indication 2cN en indice pour préciser qu'on a affaire à un entier signé représenté en complément à 2 sur N bits. Par exemple, $-5_{(10)}$ correspond à $1111\ 1011_{(2c8)}$.

Sachant qu'on a un entier non signé codé en complément à $2 \operatorname{sur} N$ bits, comment fait-on pour retrouver l'entier signé correspondant? On verra ça en DS!

5 Correction des exercices

hexa	décimal	binaire	1ère	2ème
			approche	approche
0	0	0000	0	0
1	1	0001	1	1
2	2	0010	2	2
3	3	0011	3	3
4	4	0100	4	4
5	5	0101	5	5
6	6	0110	6	6
7	7	0111	7	7
8	8	1000	-0	-8
9	9	1001	-1	-7
A	10	1010	-2	-6
В	11	1011	-3	-5
С	12	1100	-4	-4
D	13	1101	-5	-3
E	14	1110	-6	-2
F	15	1111	-7	-1



1ère approche

- Dans la 1ère approche, il y a 2 zéros.
- On remarque que 2+(-2) correspond à 0010 + 1010 = 1100 correspond à -4 dans cette approche.

2ème approche

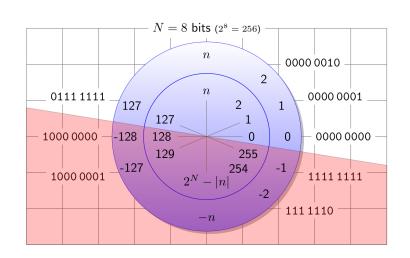
- -0001 + ???? = 0000 : 0001 + 1111 = (1)0000
- on complète la colonne de la 2ème approche

Représentation de -1 en complément à 2 : on applique la méthode

- l'opposé de -1 est 1, soit en binaire sur 8 bits : 0000 0001
- on complémente à 2, soit 1111 1110
- on ajoute 1 + oubli éventuelle retenue : 1111 1111

Valeurs extrémales représentables sur N bits en complément à deux : on représente pour moitié des valeurs positives à partir de 0 et autant de valeurs négatives à partir de -1. Sur N bits, on code 2^N valeurs donc la moitié, soit 2^{N-1} valeurs à partir de 0: donc la plus grande valeur obtenue est $2^{N-1}-1$. Côté valeurs négatives, on a aussi 2^{N-1} valeurs à partir de -1 jusqu'à -2^{N-1} .

entier		
non	représentation	entier
signé	binaire sur 8 bits	signé
0	0000 0000	0
1	0000 0001	1
2	0000 0010	2
127	0111 1111	127
128	1000 0000	-128
129	1000 0001	-127
254	1111 1110	-2
255	1111 1111	-1



Les exemples ci-dessus sont donnés sur N=8 bits. Si la somme de deux entiers relatifs dépasse $127=2^{N-1}-1$, il y a débordement et le résultat sera faux. De même si le résultat est inférieur à $-128=-2^{N-1}$. Une telle situation se repère facilement : les 2 opérandes ont le même signe, mais le résultat est de signe opposé.

- Calculer 6+3 en binaire. A quoi correspond le résultat en complément à 2?
 0110 + 0011 = 1001 soit -7 en complément à deux sur 4 bits et non 9!
- Calculer (-7)+(-3). A quoi correspond ce résulat en complément à 2?
 1001 + 1101 = 0110 avec l'oubli de la retenue devant puisqu'on est sur 4 bits, ce qui fait 6 en complément à 2 et non -10.
- Comment peut-on facilement repérer un dépassement de capacité en regardant le signe des nombres ?
 - Le résultat est d'un signe opposé à celui des nombres qu'on manipule.